
Improving and measuring quality
in application development

By Jared Darling
Solutions Delivery
Application Development

How much quality
do you want?

Excellent

https://aimconsulting.com/

2

“How much quality do you
want?” This is a question that
is never asked in application
development, but it should be—
up front and often.

©2017 AIM Consulting | aimconsulting.com 3

Application development teams commonly view quality as a
step that happens at the end of the development process
and the responsibility of the quality assurance team (QA). At
first glance, this seems reasonable as it is the job of QA to
ensure that code passes various tests, that the application is
stable and trustworthy, and that new features meet user
acceptance criteria.

But in reality, quality is not determined by whether or not a
box is checked. Quality starts at the beginning, when goals
and outcomes are defined, a timeline is established, and
resources are deployed, and continues throughout the entire
application development process, from architecture and
design straight through to deployment and round again with
every new feature release.

Even if everyone understands this conceptually, when quality
suffers, most teams try to improve it by adding tools or “best
practices” like agile, automation or DevOps. The problem is
that a lot of teams have a tendency to jump to solutions
before understanding the problem.

When you approach software quality analytically and
comprehensively, you can ensure that not only are quality
standards met, but will be able to answer the questions
“how much quality do we want?” and “how much quality did
we provide?”

When you approach
software quality
analytically and

comprehensively,
you will be able to

answer the question
“how much quality

do we want?”

Relying only on Tools
and Best Practices
is Ineffective
The main causes of software quality issues are understood
to be one of the following:

4

1) Schedule slippage forces the QA team to rush with
deadlines being missed

2) There are too many bugs, resulting in time wasted in
rework

3) Business requirements are not being met.

Teams often respond to these issues by reviewing the newest best
practice(s) to increase quality in software development and
implementing the supporting tools or practices into their processes.
Automation is one example. Agile is another. The hottest ticket currently
is CI/CD or DevOps, which is sort of an extension of both agile and
automation together.

This is not the most effective way to go about it.

©2017 AIM Consulting | aimconsulting.com 5

It’s not that automation, agile, or DevOps are bad ideas. Alone or
together, implementing modern best practices for software
development can result in better application quality if they’re
understood well and implemented correctly. The problem is that
many teams merely install tools that support these practices, only
to be disappointed in the results.

It also depends on what the quality issues actually are.

For example, consider an example scenario for number 3)
business requirements are not being met.

There may be many reasons for a new feature failing to meet
business requirements, but a common one is that the intent of a
business need got lost in translation when articulated as a user
story and its corresponding acceptance criteria.

Here’s how technical teams might try to solve this problem:

Before doing anything else, they turn to tools. For example, they
might decide to use Cucumber, a tool designed to aid in the
automation of acceptance tests by providing a way to express
test cases in natural language. They adopt the tool hoping it will
“improve quality” but, failing to understand its intent, they use it
as a repository to dump technical requirements for automation.
Of course, quality doesn’t improve at all and the team becomes
frustrated, feeling that Cucumber is a useless tool that just adds
an unnecessary step, when in reality they didn’t scrutinize the real
issues or evolve at all. Instead of adopting the natural language
that Cucumber is meant to inspire, they just added a tool to their
process and continued to write user stories as technical
requirements the way they had been doing before.

In other words, tools alone don’t solve problems; more often than
not, the issue is in your processes.

Or take agile development, widely acknowledged as a best
practice for increasing quality. One of the more common
problems with agile is not properly accounting for QA as part of
the sprint cycle. With agile, development work is boxed into
iterative periods of time, called “sprints” in Scrum methodology,

which is supposed to end with shippable software.

In other words,
tools alone don’t
solve problems;
more often than

not, the issue is in
your processes.

6

CI/CD and DevOps are intended to address this issue. Very simply stated,

Continuous Integration (CI) is a practice designed to automate build

processes, version control, and testing. Continuous Deployment (CD)

extends that practice through the deployment process. When development,

QA and IT operation teams are collaborating and communicating together

on the process of software delivery and infrastructure through automation of

building, testing, and releasing, you have a culture known as DevOps.

The whole team comes together during planning to estimate the features

that can be completed in a sprint, but it’s common for developers to either

underestimate the time they need to develop the features, or not include

quality tasks as part of the sprint, resulting in releases of poor quality or

requiring the team to put in overtime. Sometimes developers will keep

developing, moving on while testers rush to complete the work. This

enforces the common misconception that when it comes to application

quality, developers own the code and testers own the quality. Evolving this

into a more cohesive approach is essential.

©2017 AIM Consulting | aimconsulting.com 7

It’s one thing to ask the
business “do you want

quality?” and another to
calculate the investment

of time, resources and
specification required to
achieve comprehensive,

high-level, measurable
quality across the board

and in every release.

The problem here is that many teams confuse Continuous
Integration with the tools that support it. CI servers like
Jenkins, Codeship, Hudson or Cruise Control help teams
automate workflows, but out of the box they only contain
capabilities; they still have to be configured by engineers.
Oftentimes, a small team will set up CI using a specific tool
for a limited use case. Liking the result, the business will
want to expand CI to other teams without considering that
different teams may have different automation needs
requiring different capabilities or configurations. When
businesses don’t properly invest in CI, it can result in a
negative perception and the conclusion that CI/CD “doesn’t
work” because of a particular configuration or use case that
is not able to be met.

This brings us back to the question “how much quality do
you want?” Because it’s one thing to ask the business “do
you want quality?” (the answer will always be “yes”) and
another to calculate the investment of time, resources and
specification required to achieve comprehensive, high-level,
measurable quality across the board and in every release.

PLATFORM
SETUP

STAGE 2
CONTINUOUS
DEPLOYMENT

STAGE 3
CONTINUOUS

DELIVERY

STAGE 2
CONTINUOUS
INTEGRATION

STAGE 1
PACKAGING

BUILD

CHECK-IN4

3 2
8

7

6

9 10 11 12

1

5

PLAN

CODEUNIT
TEST

DEV
ITERATION
(SPRINT)

DEPLOY TO: STAGING PRODUCTION

V
E

R
IF

Y

V
E

R
IF

Y
F

E
E

D
B

A
C

K

F
E

E
D

B
A

C
K

F
E

E
D

B
A

C
K

V
E

R
IF

Y

functional
integration
beta release

network & security
infrastructure class
compliance
change mgmt.
ui
stress tests
release candidate

auto scale
prep for go live

TEST RELEASE

VERIFY
BUILD

BUILD
DEPLOYMENT

8

The Effective Way to
Improve Application Quality
To address the real issues, engineering teams need to view quality
comprehensively rather than as a component of the development
process. But this isn’t merely a matter of applying “best practices”
as previously discussed. It requires cultural change, beginning with
individual and team accountability. Secondly, it requires sober analysis
of the actual issues at play and understanding of the real investment
to address those issues. Only then, when you know what you actually
need, are best practices going to get you what you want.

Finally, more mature organizations are able to measure their results,
answering the question “how much quality did we provide?” Here’s
how it works:

©2017 AIM Consulting | aimconsulting.com 9

1. Establish accountability

Application development is both an individual and team effort.
Developers need to take responsibility for the quality of the code
they push to production, but testers need to step up too. It’s
common in sprint planning meetings for QA to take a backseat and
assume a supportive role. QA needs to be vocal about what they
need to do their job correctly, which may mean being more assertive
during sprint planning to ensure QA has enough time, especially if
they are getting crunched repeatedly in every sprint. Indeed, QA
needs to assume authority for an application’s quality end-to-end,
and not merely as an end-of-the-process checkpoint. Is it testable?
Does the application meet business requirements? Is risk properly
managed? Over the long haul, this strengthens communication,
mutual respect, and capability within development teams.

Also, if DevOps is your destination, wrap in the IT/Ops team so
that everybody involved in the application—from infrastructure
to development to testing to release—is equally invested in the
culture and processes that lead to quality applications.

2. Understand the real problems

Sleuthing out the source of quality issues is needed, especially when
those issues are chronic, with questions asked and answered as a
team together and with honesty:

• What exactly is happening? Is the code that gets checked in
overly buggy? Are cycles taking too long or deadlines being
missed? Is functionality not meeting expectations?

• Why is it happening? Are the tools being used the right ones
and configured in the right way? Are there poor design patterns in
effect, resulting in a need for a lot of tricky customization and
rework and expanding technical debt? Are roles and processes
crystal clear to everyone on the team? Is the team adequately
protected and able to focus on their commitments? Are user
stories and their acceptance criteria fully understood?

Identifying the source of quality problems is important as it is not
uncommon to see teams employing a process solution for a technical
problem or a technical solution for a process problem.

Everybody
involved in the

application
should be

equally invested
in the culture and

processes that
lead to quality
applications.

10

3. Set clear goals

To maximize efficiency and ensure the right solution is applied to the
problem, articulate clear goals such as “eliminate high priority
defects.” If possible, depending on the specifics of the project and
team, take goal setting a step further with measurable KPIs such as
“we want to reduce sprint cycles from four weeks to two” or “we want
to decrease the number of defects per release by x%”. Setting
measurable KPIs clarifies which options are the best ones, results in
better planning, and will get you closer to the results you ultimately
want.

Next, document the plan needed to achieve these goals, including
what is needed for your internal teams to function better or produce
higher-quality applications. One useful form of documentation is the
Definition of Done, or working agreement, used to assess when a
user story is completed. Using this model helps to identify any lack in
quality—and in the vast majority of cases a team will find that the
problem is in the process, not the tools.

Once you have goals, you can start to answer the question “how
much quality do you want?” In other words, what is the right level of
investment to achieve the level of quality the business really needs?

Not all applications are the same. Quality assurance encompasses
both risk and complexity and it’s important to acknowledge that the
standard to be met varies. For example, a certain level of risk can be
tolerated for an e-commerce application while an application
powering a rocket ship sending precious cargo into outer space must
be perfect—in other words, buggy software is a bigger deal in some
applications than others. As intolerance for risk increases, so should
the level of investment in quality assurance. This is rarely a question
businesses grapple with, but can be tackled in practical terms.

Depending on the quality issue you are solving, as well as how much
defects matter to your application, there are varying levels of
investments that can be made to improve quality—from adding some
simple automation to rebuilding the application from the ground up
with better design patterns, armies of test engineers, and a full-blown
DevOps culture.

©2017 AIM Consulting | aimconsulting.com 11

4. Implement best practices

This is the step that a lot of teams jump to without first doing their
due diligence. Now that the team owns accountability for quality, the
real problems have been identified, and the objectives are clear, it’s
time to look at which best practices and tools are best suited to get
you from A to B.

Through all of the previous steps, the team should be encouraged to
remain as abstract and agnostic as possible when discussing any
possible solutions to the quality problems being addressed. That
discipline will pay off once the team reaches this step.

With the amount of effort put into the previous steps, the gaps in
quality should be very clear. At this point you might want to leap into
assigning solutions to problems, but it is recommended to take
thoughtful, deliberate action to obtain a measurable result.

A strong approach recommended by AIM Consulting is to articulate
quality gaps as user stories, the same way you would regular work. In
other words, create a prioritized backlog for addressing quality issues
in the software development process itself.

12

a) The user type

b) The task/action they want to be able to do

c) The desired result of completing the story

d) Estimated size of the effort involved (can

use numbers or T-shirt sizing)

e) Estimated complexity of the effort involved

f) Risk inherent in completing the story

g) Risk of NOT completing the story

h) Priority

i) Definition of Done

j) KPIs

EACH STORY SHOULD HAVE:

The first three elements make up a basic user story—who wants what
and why. Size, complexity and risk are essential for determining the
level of investment and how much quality you want. This could also
be displayed as story points. Documenting the risk of NOT
completing a story is important for prioritization, especially if the size
and complexity of the user story is also high. Finally, the Definition of
Done and the associated KPIs (when viable) are going to allow you to
measure quality.

As a ____________ (a), I want to be able to __________________________ (b)

so that ___

___ (c).

Size: ___ (d) Complexity: ____ (e)

Risk to Complete:

_____________________________ (f)

Risk NOT to Complete:

____________________________ (g)

Priority: _________ (h)

Definition of Done:

___ (i)

KPIs:

___ (j)

STORY #000

©2017 AIM Consulting | aimconsulting.com 13

Let’s look at some examples

1) There are too many bugs

If the problem is that “code is really buggy”, dev managers (user type)
might decide they want to draft a plan to create unit tests for
business logic (action), to have fewer regressions after a developer
changes code (desired result). The size and complexity of this story is
large. The risk of doing unit tests is that it will delay in-flight and
near-term work until the tests are complete. However, the risk of not
doing unit tests is suffering longer test cycles over time as code base
increases with a greater chance of needing hot fixes on release day
and being in violation of SLAs. This makes the priority high.
Completion would mean that ‘all classes in scope have unit tests
created’ (Definition of Done) with the percentage of code coverage
tracked. To meet a specific KPI, the team might conclude to
implement a popular tool such as SonarQube for code coverage and
analysis, and assign a coverage completion target metric of 80%.

As a ____________ (a), I want to be able to _____________________________

_____________(b) so that ___

_____ (c).

Size: ___ (d) Complexity: ____ (e)

Risk to Complete:

______________ (f)

Risk NOT to Complete:

__________________________________ (g)

Priority: _________ (h)

Definition of Done:

___________________________ (i)

KPIs:

_____________________(j)

STORY #001: TOO MANY BUGS

L
L

draft a plan to create unit tests for

business logic
I can have fewer regressions after a developer changes

code

Will delay in-flight and near-term work

until complete

All classes in scope have unit tests

created Code coverage report shows

X% code covered by tests

80% code coverage

High

Longer test cycles over time as code

base increases. More likely to have

release day hot fixes. Will result in

business being in violation of SLAs

dev manager

14

2) The build breaks often after developers commit their code

If the quality problem has more to do with code breaking after it is
submitted, then the developer (user type) might want to implement
automation and continuous integration (action) to get immediate
feedback about the changes made without the expensive process of
setting up the required dependencies for testing (desired result).
However, CI is an entire paradigm shift requiring significant investment
so this should be noted as an XL effort with considerable complexity.
There’s also the risk that CI can become a rabbit hole. Under-invest
and it won’t meet the needs of the team. However, the risk of NOT
implementing CI includes schedule delays waiting for test resources
to be available. Implementation takes longer/costs more because of
increased work load on developer and QA engineer. Prioritization will
depend on the risk of not implementing CI and the level of investment
the organization is willing to make, but in this example, it’s probably a
medium. A Definition of Done might be “the team can demonstrate
and end-to-end workflow of their implementations”.

As a _________ (a), I want to be able to __________________________________

_______________________(b) so that _____________________________________

___ (c).

Size: _____ (d) Complexity: ____ (e)

Risk to Complete:

__ (f)

Risk NOT to Complete:

_______________________________ (g)

Priority: ___________ (h)

Definition of Done:

__________________________ (i)

KPIs:

_____(j)

STORY #002: THE BUILD BREAKS OFTEN AFTER DEVELOPERS COMMIT THEIR CODE

XL
L

automation to execute in a CI environment

when I made code changes
get immediate feedback about the changes

CI can become a rabbit hole of its own. Under-

invest and it won’t meet the needs of the team.

The team can demonstrate

and E2E workflow of their

implementations utilizing CI.

N/A

Medium

Schedule delays waiting for test resources to be

available. Implementation also takes longer and

costs more because of the increased work load on

the developer and QA engineer

developer

made without the expensive process of setting up the required dependencies for testing

©2017 AIM Consulting | aimconsulting.com 15

3) QA is getting too expensive

Let’s assume that a business is struggling with an expensive and time
consuming QA process. The QA lead (user type) might want to
implement a comprehensive automation system for applications
(action) in order to reduce the cost of testing by at least 60% (desired
result). The size is Large. The complexity is Large. The risk is a high
initial investment that will introduce code changes as automation is
being written. The risk of NOT implementing automation is that it will
be necessary to hire additional engineers to perform the necessary
QA. This makes the priority High. A Definition of Done and associated
KPIs would be the cost ratio for QA reduced by 60% over the
application lifecycle with reduction in test cycles by 70%. Additionally,
QA ratios should be in alignment with Dev and PM ratios.

Once the team has a list of stories that articulate the quality gaps and
an idea of how much investment each will take, a conversation
around ‘how much quality do we want’ can intelligently be had.

As a _________ (a), I want to be able to ________________________________

_______________________(b) so that ____________________________ (c).

Size: _____ (d) Complexity: ____ (e)

Risk to Complete:

______________________________________ (f)

Risk NOT to Complete:

______________________________________ (g)

Priority: _______ (h)

Definition of Done:

___________________________________ (i)

KPIs:

__________ (j)

STORY #003: QA IS GETTING TOO EXPENSIVE

L
L

Implement a comprehensive automation

system for our applications
I reduce the cost of testing by 60%

Initial investment is high and will introduce

code changes as automation is written.

• Test cycles are reduced by 70%.

• Cost ratio for QA is reduced by

60% over the application lifecycle.

QA cost ratio in alignment w/ Dev &

PM ratios

High

It will be necessary to hire additional

engineers to perform the necessary QA

QA Lead

16

5. Measure how much quality you provided

Whatever best practices you choose to implement, you can measure
overall effectiveness by measuring how much quality your teams
provided with each release. Most application development teams
measure quality through acceptance tests. Does the application
feature meet the business requirements, yes or no? This is a fine
place to start. However, you can take it a step further by applying
quantitative metrics to measure quality output sprint by sprint.

Here’s how it works: at the beginning of a sprint, count up the
number of acceptance criteria that have test cases (this is preferably
all of them). At the end of a sprint, determine the number of criteria
that were met. Divide the result by the goal and you have a
percentage metric that can be tracked over time, sprint to sprint. Like
velocity, this metric can be used to evaluate the performance of your
team. If your test cases are automated, this is extremely easy.

The KPIs identified in the previous step can also be utilized to provide
actionable information that the team can use to more efficiently target
quality issues when they next come up. Here’s where analytics can
play a role in automation. Automation logs can easily be harvested
from CI servers and stored in databases for processing. Results for
automation test cases over time will begin to emerge. Utilizing BI
analytics tools, directors of engineering and business stakeholders
can have visual dashboards that present the quality of their
applications in near real-time.

Final Thoughts

One important factor to understand is that the desire to improve
quality really only occurs at the point in which the team or business
decides that problems with the application are encroaching on the
ability of the software to provide value. This can happen anytime
during a project—while creating the project backlog (planning phase),
during defect resolution (delivery phase), or even after the project has
completed (project retrospective).

Regardless of the timing or reason, development teams need to
adopt a comprehensive view of quality and approach new tools and
best practices with a critical lens for solving their specific issues. Too

©2017 AIM Consulting | aimconsulting.com 17

often, technical people want to jump to technical solutions, essentially
skipping steps 1-3 (accountability, assessment, goals) in favor of 4
(implement best practices and tools). To really achieve quality, the
commitment needs to be shared across team members, the goals
need to be clearly defined before a plan is made, and the progress
needs to be measurable.

Ultimately, application quality matters to everyone. Evolving a culture
requires transparency that allows viewing of quality from both the
organizational and individual level. This will evolve the development
process and its individual components that not only builds morale
across the team but strengthens the business as a whole.

About AIM
Consulting

We build
outstanding
software

Denver
720.305.9818
contactdenver@aimconsulting.com

Minneapolis
952.314.7255
contactminneapolis@aimconsulting.com

Seattle
206.624.5333
contactseattle@aimconsulting.com

Our approach to application development is team-
centric and holistic, from architecture and design, to
modernizing software development processes, to
providing flexibility to our clients to engage our experts
through managed services to clear a stacked backlog,
resolve issues, and scale for long term strategies.

Software Strategy and Design
Assessments and strategies
Planning and roadmaps
Enterprise application architecture

Custom Web Applications
Full stack web applications
Service oriented architecture
API development
Cloud platforms
QA and automated testing
Deployment and maintenance

Development Best Practices
Agile Scrum, Lean-Agile, Kanban
Scaled and SAFe Agile
TDD and Paired Programming
CI/CD and DevOps

CONTACT US

AIM Consulting, an Addison
Group company, is a rapidly
growing leader in technology
consulting services and solutions
delivery that helps companies
compete effectively in the digital
world. AIM builds long-term
relationships with the best
technology consulting talent in the
region and delivers end-to-end on
business-critical initiatives with
modern technologies and
processes. Learn more at
aimconsulting.com.

https://aimconsulting.com/contact-us/seattle-office/
https://aimconsulting.com/
https://aimconsulting.com/

