
Gated Test 
Automation
Improve the reliability of test 
automation and communicate 
the standing of product 
quality more clearly.



Contents

Gated Test Automation | AIM Consulting

1 Introduction

2
Why Test Automation 
Is Just the Beginning

3 Bridging the Divide

4 Gated Test Automation

5 More on Communication

6 Conclusion



Introduction 

Test automation grew out of the recognition and 
acceptance that manual testing is inefficient and cannot 
scale. 

By automating testing as part of their Continuous 
Integration/Continuous Deployment pipeline, enterprise 
organizations took a useful step in the right direction. 

However, test automation is just the beginning. Many 
organizations inadvertently introduce more fragility and 
inefficiency into their CI/CD with test automation, thus 
negating its benefits. 

Gated Test Automation 
Introduction 



Testing and Test Automation

Let’s define testing and test automation, no matter how obvious they are.

Gated Test Automation | Introduction

Testing is the validation that software meets its intended purpose without breaking 
other code before being released to production.

Test automation is the application of tools and software to perform testing that 
would otherwise be done manually by humans. Offloading the testing burden from 
humans to machines increases efficiency. It enables human testers to perform more 
complex testing that automated testing cannot efficiently solve. 

Ideally, a test automation solution scales across the enterprise and improves code 
quality and efficiency while reducing uncertainty. 

Unfortunately, organizations struggle to achieve this. Why is this?



Gated Test Automation | Why Test Automation Is Just the Beginning

Losing Improvement for Perfection

Many enterprise organizations unknowingly ignore the nature and 
purpose of their CI/CD pipeline because they are so focused on the 
goal of test automation: faster delivery with higher quality.

In this noble and correct pursuit, they unconsciously believe that 
automated tests equal faster delivery and higher quality.

This equation is only partially true.

Automated tests are necessary but will only meet the end goal 
when applied within the right strategy.

Automated 
Tests

Faster 
Delivery

Higher 
Quality



The Wrong Strategy

Gated Test Automation | Why Test Automation Is Just the Beginning

Most teams have a strategy of ”test everything at once after the code is 
written.” 

This creates an unintentional divide between developers and testers 
resulting in very impressive code and very impressive tests that don’t work 
well together. 

Failed tests block promotion throughout the pipeline, often demanding 
the team’s time to troubleshoot the code and the tests. 

Additionally, the team and the stakeholders can’t know the true state of 
the software.



A Typical Conversation

Gated Test Automation | Why Test Automation Is Just the Beginning

The true purpose of software testing is to 
communicate the true state of the software. 

Most teams don’t understand this, even though 
it’s critical in order to effectively inform the 
way in which they test. 

As a result, teams find themselves 
stuck in a process and 
conversations guessing at 
the true state of the software. 

“I can’t get this code 
to install.”

“It works fine on my 
machine, and it’s really 

elegant code.”

”Awesome. It doesn’t change the fact that I 
can’t install it and run my equally elegant 

tests against your elegant software.”

Tester

Developer

Tester



What This Tells Us

Our automated CI/CD is supposedly 
more efficient than manual testing.

However, as we can see, the conflict 
between the code and the tests results in 

inefficient discussions within the team and 
confusion about the state of the 

software. 

The team missed the true purpose of 
software testing. 

It’s not to test for everything “out of the 
gate” (pun intended). Again, the true purpose 
of software testing is to communicate the 

state of the software, internally and 
externally. 

Gated Test Automation | Why Test Automation Is Just the Beginning



Proper Understanding and Alignment 
Lead to an Effective Framework

Automated 
Tests

Higher 
Quality 

Faster 
Delivery?

Gated Test Automation | Bridging the Divide

If the team and stakeholders understand and agree that testing is a way to effectively and efficiently 
communicate the state of the software, they can implement a CI/CD framework and process that 
meets the demand for higher quality software delivered more quickly.

So…



Working in Unison

Gated Test Automation | Bridging the Divide

Knowing and communicating the state of the software 
requires tests and code to work together, which requires 

Testers and Developers to work together. 

This is where Gated Test Automation comes in. 

In our previous example, the talented team with an initial 
strategy of one implicit gate in their process required 

perfection (test for everything "out of the gate").



What is Gated Test Automation?

Automated 
Tests

Higher 
Quality 

Faster 
DeliveryGates

Gates in a CI/CD pipeline define which tests must pass in which environment, 
forcing testers and developers to collaborate and communicate at the start 
of a Sprint through the end. 

Code a little, test a little, code a little more, test a little more, and so on.

Gated Test Automation | Bridging the Divide



Consider Everything, but Address Iteratively

Coding and testing little-by-little requires addressing 
all factors in the CI/CD upfront. 

With well-defined gates, which we’ll get to shortly, teams 
are forced to think about often overlooked variables like 
runtime, installation, and anything else that must work in 
order to promote code through the environments to 
production. 

The team that was previously blocked from figuring out if 
a failed test was an issue with the code or the test itself is 
now aligned on expectations for code and tests before any 
fingers hit the keyboard.

Gated Test Automation



So, what does Gated Test 
Automation look like?

Now that we understand that test 
automation’s purpose is to communicate 
the state of the software and that Gated 
Test Automation is the most efficient 
and effective way to do that, let’s drill 
into the technical details.

Gated Test Automation | Gated Test Automation

The pyramid at the right 
demonstrates the process of Gated 
Test Automation, a far cry from ill-
defined automation that tests for 

everything at once.

Test Volume and Rigor

More 
Rigor

More 
Test
Cases

Differences Between 
Automated Tests



Right Time for the Right Conversation

As you’ll see in greater detail, Gated Test Automation enables the right conversations 
and problem-solving at the right time. 

If we return to the conflict between the developer's elegant code and the tester’s elegant 
tests, we can now see that they are set up for the right conversation at the right time.

There’s no more ‘feeling around in the dark’ about the problem – shooting for perfection 
right away, without defined expectations.

“Hey, I can’t install your code. 
Let’s look at that.”

“Thank you. Yes, let’s take a look. 
I thought I addressed that.”

Tester Developer

Gated Test Automation | Gated Test Automation



Going Through Your CI/CD with 
Gated Test Automation

Now, let’s look at the activities and gates 
from Source Control to Production.

Each branch of code: 
• the feature branch, 
• the dev branch 
• and the test branch 
have different levels of rigor expected and are subjected 
to different test automation suites.

Developers and testers will commit code 
changes to the feature branch and merge
the code to upper branches when it is ready.

Gated Test Automation | Gated Test Automation

Main

Feature

Test

Dev



Enterprise Environments

Modern software projects use multiple environments, each with a different 
purpose to test a certain aspects of the deployed application.

Test Environment
Rigorous testing: Code will work in all specified cases on commit

Dev Environment
Proving ground: Code will work in simple cases on commit

Branch Environment
Freeform sandbox: No code is really required to work on commit

Gated Test Automation



Code Branches

The code running in each environment can be managed by keeping a branch for each environment.

Test 
Branch

Dev 
Branch

Feature 
Branch

Main 
Branch

PR from Dev to test shows that it 
has passed initial Quality 
Engineering gate 

PR approval from tester is 
required to enter

Core code development 

Branch is named by its 
Scrum board task ID

First pull request (PR) is from feature to 
Dev code

Cannot be committed directly to Dev

PR approval from developers required to 
enter

Gated Test Automation | Gated Test Automation



Test Types

Then, it's possible to run various types of tests in new environments which 
each serve a different purpose 

Branch Env. 
Test

Test 
Environment 
Acceptance 

Test

Branch 
Environment 

Test

Dev 
Environment 
Smoke Test

Acceptance tests express conformance to specifications 
and requirements

Smoke tests are the agreed minimum function 

A single API call with non-failing result may be a smoke test

Let’s see this in action... 

Gated Test Automation

Branch environment is the least rigorously managed 

Developers only need to have passed unit tests to enter 



Smoke Tests may 
or may not Fail

Block When 
Unit Tests Fail

Build when Unit 
Tests Pass

Code is Committed to 
Feature Branch

Develop Structure

Write Unit Tests

Write Smoke Tests

Branch Phase: Build-to-Branch Environment

Gated Test Automation | Gated Test Automation Section

Unit tests are the requirement for the first check-ins and deployments.
Smoke tests will be developed but don’t have to pass at this stage

Branch Environment 

Main

Feature

Test

Dev

Branch

Prod

Dev

Test



Acceptance Tests may 
or may not Fail

Block When 
Smoke 

Tests Fail

Build when Smoke 
Tests Pass

Code is Merged to
Dev Branch

Develop Business Logic

Write Acceptance Tests

Smoke Phase: Build-to-Dev Environment

Gated Test Automation | AIM Consulting

Smoke tests are the requirement for the Dev environment.
Acceptance tests are developed but are not required to pass.

Dev Environment 

Main

Feature

Test

Dev

Branch

Prod

Dev

Test



Scenario Tests may 
or may not Fail

Block When 
Acceptance

Tests Fail

Build when Acceptance 
Tests Pass

Code is Merged to
Test Branch

Develop Business Logic

Write Acceptance Tests

Acceptance Phase: Build-to-Dev Environment

Gated Test Automation | AIM Consulting

Smoke tests are the requirement for the Dev environment.
Acceptance tests are developed but are not required to pass.

Test Environment 

Main

Feature

Test

Dev

Branch

Prod

Dev

Test



Report and go/no-go on 
acceptance, perf and other 

testing

Block When 
Scenario
Tests Fail

Build when Scenario 
Tests Pass

Code is Merged to
Main Branch

Perform Manual, 
Acceptance and 

Other Testing

Release Phase: Build-to-Prod Environment

Gated Test Automation | AIM Consulting

The final decision to move into production takes all the data from automated testing, 
manual testing, user testing, and other activity and the team decides together when the 

software is ready for users. 

Prod Environment 

Main

Feature

Test

Dev

Branch

Prod

Dev

Test



“How is the Sprint 
looking?”

“The code is in 
Dev right now.”

Immediately, the PM knows 
that Smoke Tests have 

passed, and the next gate is 
the passing of Acceptance 

Tests.

Product Manager

Developer

More On Communication

Often there is an expectation that all tests have to pass in all 
environments. This prevents us from having a full 
understanding of the software as it is being developed.

Teams who implement test automation without gates 
frequently rely on automation reports and dashboards which 
require time and effort. SDETs have to build and maintain 
reporting to communicate the state of the software. 

Gated Test Automation reduces that need by providing a 
shorthand and informed agreed-upon assumptions for the 
team and stakeholders to quickly know the state of the 
software. 

Gated Test Automation | More On Communication



In Conclusion 

Throughout the entire Sprint, Gated Test Automation 
ensures every team member and stakeholder 

understands the state of the software and that it’s 
being delivered with better quality and efficiency.

Gated Test Automation | Conclusion



About the Author

Patrick Taylor
National Technology Evangelist

Patrick Taylor is a National Technology Evangelist at AIM and 
holds over twenty years of experience in technology leadership. 

He helps our clients solve their hardest technology problems by 
providing reference architectures, high-quality tools, and 
industry-leading techniques to software development. On a day 
to day, Patrick builds teams, designs cloud architectures, and 
drives velocity and quality. 

His background spans all levels across software organizations, 
from individual contributor, to software director, to architect.

Gated Test Automation | AIM Consulting



‹#›

About AIM Consulting
AIM Consulting, an Addison Group company, is an award-winning industry leader in technology consulting

and solutions delivery. AIM’s differentiation is our collaborative engagement model that provides

cross-functional results. We work with clients, shoulder to shoulder, for one goal – their success. Founded in

2006, with offices in Seattle, Minneapolis, Denver, Houston, and Chicago, we are ranked among the fastest

growing private companies and best companies to work for due to a long track record of success with our

partners and consultants. Our long-term relationships with the best technology consulting talent allows us to

deliver on expectations, execute on roadmaps, and drive modern technology initiatives.

aimconsulting.com 

http://www.aimconsulting.com/

